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ON_THE STRENGTH OF THIN SHELLS UNDER FINTTE DEFOFSATION, 1. FUNDAMENTAL THEORY

SUHARA Jirc,
Baciielor of Ingineering and

Assoclate Member of the Ass'n,

[Notn: The follewing 18 a report hesrd 3 April 1943 st the joint meeting
of the Zosen Kyakal ﬁhipbuilding Asaociatioxj and the Zosen Kyokal Han=Shin
furabu /Bhipbuilding Association's Osaka=Kobe Club/; and published in the
Japanase=Language journal Zosen Kyokai Koen [}'\"eporta of the Shipbuilding Assoc-
iation/, Volume 72 (June 1943), pages 10l=11l, The abstract in the original
was in Fnglish, which is copied here, f

The author is & University Hell student at Kyushu Imperial Universityj

ABSTRACT

The genersl theory of thin shells was formerly investigated by A. E. H. Love, 1)

and has been applied to wany problems of stability of thin shells and their
results of caleulation compared with experiments by various investigators,
Generally it was clear thet some regular diserepancles existed between results
dediiecd ivom Lové's theory and experimental evidences,

Th. von Karman pointed out that Love's theory based on infinitely small
deformation of shells is not realired in many cases; actually deformations of
shells by oxternal or end pressiure are so called "Durchaschlag" Zﬁotez The
provislonal Japanese translstion used by the author for this word is tenkutsu,

which literally means "rebending" aceording to the separate Chinese charucters)

=]l = |
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whereas "Durchschlag!" means "punch through" _.7 , and consequently the stability

of thin shells must be discussed taking inte account finite deformation based

on nonlinear difrerential eauations of equilibrium. Fut his theory has not

yet been completeds i
The author first investlgates the general theory of elasticity taking into

secount finite displacement; then he obtains the general theory of thin shells

for the case of large deformations, which forms the generalization of Love's

thin=shell theory; and lastly, as iis specisl case, he shows the fundamental

equation of "Durchachlagh by the method of derivatien of equations referred

to some shell shapes,

I. LATRODUCTION

The general theoryfaafcrmations in shells /Titerally, "thin curved plates!/
was flrst disc.esed by A. k. H. Love 1) on the Lasis of the assumption that
these doformations are infinitely small, and later many other investigators
carried out caleculaiions in application to the problem of the buckling of shells
in order to make comparisons with experimental results; the peneral conclusion,
however, was that tho buckling valies of a sitell which possesses initial curva-
ture is severcl times larger then the experimental value, This was explained 1 ;
by Th. von Karmen as due to "Purchochlaghs [ﬂotez The Japanese expression,
Lenkutsu, employed b, the author here to translate "Durchschlag" ﬁbrenk
th:-oughﬂ mesns literally "rebending". It is interesting to note that the

Japanese word, zakutsu, for fbuckling” means literally "uollapae-bending“]

that is, the carly problem of buckling was a theory employing the asaunmption

;
i
|
z
!
i
|
|

of infinitely small deformations, and hence 118 buckliny values were sought
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as the eigenvalues of & linear differential equation, Concerning the phenomenon

of deformatlons in shells possessing inltial curvature, if one takes into con=

sideration finite deformation in shells, it is spparent that there exists an

aquidibrial state waleh can maintain equilibrium by an exiernal pressure lower

than the abnva=mentiened buckling value; hefere the external pressure reaches

the buekling value, the shell leaves the state of infinitely small deformation
ssumed by Love and thus disecontinuously experiences finite deformations. The

latter is often regarded as the buckling load in experiments. This reprosents

the so=called phenomenon of Durchschleg and, if finite deformation is not

taken into consideration, cannot be interpreted.

The theory of shells teking inte consideration finlte deformstion has been
atudied in connection with particulsr shells by Kerman 2’3), KAWANO h), MIAUKT 5),
YOTSUYA 6); but, as even Xarman nimself has stated, the theory of Purchschlag
has not yet been perfected, Concerning phenomenon besides Durchachlag, often
one must consider stotes of Iinite deformatlon in order to decide the ultimate
strength of shells if ertremely thin, Since, however, inhere has been no litera-
ture, as fur as the author knows, giving the genersl theory of [inite deformed
states, the author has attempted here to trest this subject, |

In studying the finite deformations of shells one must first review the |
genersl theery of elastie bodies subjected to inite deformation, which theory
ig basie to the discussion here, GSeveral studies 7,8,9) on this have already
appeared, but since they are thought unsuitable as a foundation for any theory

{
of deformation of shells, tne author will [first endeavor to obtain the equa= %
tions of equilibrium relutive 10 @ coordinate system which delrrms (transforms) ﬁ

-3- .

Kt RICTED b
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together with the elastic bedy; next he will apply these equations to the

deformation of shells to obtain their fundamentel equations. Yhen, after carry-

ing out some studies in comnection with Lurchschlsg, the author will derive

the gener:l equations and finally wil) show a method for obtaining definite

concrete eouations ler several apecial cases [?ectangular and polar coordinateg?.
II. FINITH DISTCRITON (8 STRAINY OF A FLASTIC 80DY

bR
In Figure 1 take any small ! carvicle }4 in the elastic body; to indicate

the position of 5& express by any curvilinesr ceordincte systen z\,if‘f ES\
which deforms (transforms) along with the body, and by a rectangular ceordinate
system R (xl xé, x3), which 36 held fixed in space. (Note: The numbers in

xl, xa, x3 are not exponents bul express mere indices, Indices assume the values
1, 2, 3, In what follows we shall use this notation.) Take the position of
bafore deformation as P, and the positien aftor deformation as 'P. Taking Hl

vefore deformation, we find the relstion between (x s xz, x3) and \ﬁ‘f E?}

o be

he
i

e

*
E4RN

iy
;I'\

v

IO
\
p—

(2.2)

Next, take another particle ﬁ?? which is very close to %3 ; teke the position
of (&% vefore deformntion as 0, und the position after deformation as 'Q.

The conrdinates R, and Rl of GEP are respectively (xl + dx ) 24 dxa, 34 dxj)

sand (?A- iL, _?}::,._Aa: 4 LB ) 3 if the distance betwesn ?:E and & vefore ‘
deformation is taken as dr, then dr is given by the following equation % ;

(e L L (AR |
i 8l dd ilsﬁj‘“o <*'*§>§ @
-l = |

TESE N G L RV
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Next, if we substitute inte (2.2) the expression obtained from (2,1),

™ 1A
namely, VR B
e T
/Y
we abtain o o 9 Q’i]’ T
At . :vvu" L X\C}‘{» /J\‘:r\":“/
EI) AL A T A
(2.3)
'1,‘;" -r:“
where we take R T L
n‘,i "y o \‘X n}:;: ’},: v

(Note: Hereafter, the Foman leiters i, J are used Lo designsie the various
quantities relating to ﬁbi and the Greek letters + .7/  are used to designate

the various quantities relating to Fi' When the same index appears twlee in

the same term, we shall agree to ihe usual tensor summation convention = that is,
in every such case we sum from 1 1o 3 relstive to the repestsd index.)

Next let the elastic bady suffer a deformatisn., If the coordinates of

relstive to Ro are taken as lxi s xi * pi(x), the gi(x) represent the components,

relative to Ro’ of the displacement veetor, when we have expressed lxi and

pi as functione of E # , and if we sssume

/ £ 5 e \5',(m:1 s AP
X == ?;‘4{{"}’ (1 mn \{/

then the Po coordinsies of ifg after a deformation beanme

' '

) - [n/ : AL
'-]M(%:} == ,j”g‘g) wders ;s) 1

(2.4)

.5-
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e
Y

Conseauently the Fo coordinates of @ after a deformation become

bhode == P A d fAE) j‘(’;’)% A1) +v(E)Fdv(E)

“ ,, ‘
therefore the distance d'r between ﬂ* and @ after a deformation is

expressed as follows:

a're o
% et n e dTrdYY
Agsin, if we sel drom ar’- 2 "pvds an-
t ¢ — ! ( e e O >
we ge [ :" ¥ LR ,
g &,.y\.[ ) :){o/ I’L
A
, (2.5)
) AR R4
Further, if we assume, relstive te another coordinnte system r{‘(’& 13 Jwhich

veries witi the bedy, the expression

det—dere== 0%, dE A

we clearly can establish that

’QEH ;B ¥
w3 T B
-6-
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5 ‘“ §

therefore, we find that Euy ere the components of a second~order covariant i
tensor relative to Hl and moreover are symmetric according 1o (2,5)s
Next take the components of the displacement vector relative o Rl as ’W) s

1f using its covariant derivative 'wﬂ,,u. , that is ,%ﬂ

@M Q)
o
e
i
-
-
<
r__
L“
I WX
- v
1
(L o
* 3
3
S

L ; A 8
PR IR T v
g ey (o NILI'V ST W Wy ) , (2.6)

(Note: We call provisionelly the tensor & v the distortion tensor. See

HeConnell 10). The third term on the right side of (2,6) is the term that

expresses anev the fact that we are conaidering finite daeformations,
The veriatlon wiich arises due to distortion, of the coordinute system :

——

of the Christoffel sywbol ' LYy relative to the coordinale sysiem, which
deforms together with the elastlc bedy, includes the displacement and ite
derivative when appearing in the eauilivrium equations; hitherto it had been
disropurded, but in the theory of finite deformstion it is neceasary to take
it too into censideration. Consequently if, talking the Christoffel symbol

after deformation as "‘/“3‘;7 we toke up to second=order terns of £, we

T ’“"fﬁs-ﬂ,,/,.’{@i" Qepr) _naP¥/ 95 o N*’WJ"’\ f
/ )«;-‘ T e -/277 (.?f’ JE/“ "t"} 7 Q e’“ :E ?! /' |

(2.?)

where r;r/(' ] /‘“/"“"J‘} ~/

P =Y g1 2

(we do not take the sum relative to

/‘,IU) ’/ff)

Z//H.; Fies T wrewal ﬁ ’;frr/rfu" ;'1/' d$ :
it Ied n ~he ("‘;HIG -] =
£y TRt P | ;

R 3 3 hii
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Tensor E;an is a quantity concerned with distortion, but is not the
distortion itself. MNow if we take '?'](“) as the compenent of elongatien

relative to coordinate EH then we get

e N .3 o S
A ’q { R Sead R 4 Loloes w'v-J—w.-l«w-- M e B4
7 i(,‘zrvl,_:j,‘i'(’[ =\ | =+ Epp Rl R EA(““ T e S t A") T o Hle < f‘f‘7
7 (the sum relative to AL 8 not taken)

o £

where 2/{/4 w ;;’-"“: expresses the physical components of -5/,,,./,4 . When terms
4 o

in ;‘;/‘/" of degree higher than the second can be omitted, our work is in agree-

ment with previous theories, I{ we tske Z(/,,) as the angle formed by the

Y
.

£/, curve wd £ ¥~ curve before deformation, we get

O - e 9 £
f'f‘)’j‘/‘/‘ \‘ { 2&{;41.1

(the usual sumnation conventior does not apply here to 5‘r'. ¥) .

i
v

When we ean emlt terms in 5‘,,-,/ above the second degrec, we get

& - 4
4 ol e €
>y Zo e

whieh is in ayreemert with previous theories,

Agein, if we geek suiteble conditions, we get

L]

: . 4 . Ak
[ e B — T Ty A == ; TS i a B
T e 7T e ) o T W iNET T S A7 8 (g.h)
y J7 x ¢ Z,;l/ LT ®i7y / {7; J'

7
4
the third teris on Loth sides are newly wddad terms. AR 'Z‘a;.«'/,;..

IIIe LAW OF ELASTICIYY AND EQUATIONS OF MPYTON

Take 8 a8 the area of any elosed curve in an elastie bod; after deformatien,
and take V &8 the volume of the part surrounded by S, If we designste by T the
kinetie energy possessed by V, and designute by ;/9 the densily after deform=

-8-
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ation, we have

e L P IRT f
7 1:‘:{ ‘ /]{{‘;‘; ¢ L (3.1) i
(Note: ;fﬁb 18 the coordinste that deferms aleng with the solid.) The

dot (+) designates differentiation with respect to the time Y, and we use the

pmere i
o

designation ﬂffﬂ:‘; J-aZ /f”'fgf . If we take K" as the componenis of the
resultant stress vecter eperating en V, and M ag the compenents ol the momentum
vector, end if we designate by SV the virtual work done by K and M* we

then have

iy P A ! ;
P ;A'» fabiouiy { A ‘;j ‘7' IR & /o Jl\;f‘ P ol Sy
e 5 i = .
¢ ;/* ; v &4 Ll
£ / : (3.2)
vhere
~ i w ¥
LS e 1 L] - .
1o, =N PYREEL A o e s e D)
p » a ¢ {anee mad Ay are caad)
| o 4
RIS ,:' i." ) YRR ’ AT e
\

>
s

. b =4
If ve teke L 88 the components o1 the velocily of ‘3 T, We gob

e £ BT
b o L{ ‘ Y- f::f 54 S
further, for any two times b and b, we have
+ B
[STab= =\ | WIS (g
.&ﬂ * *g \/ 7
Again, iniroducing the stress tensor - v by means of X *ig =T Svand |

employing Oauss!' divergence theorem, we get
..... sy
S(KHASD(,sFm S 1 ﬁfl r‘} “‘:}l) ‘/> ‘v (3:k)
5 %
-9 -
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Hamilton's principle is +
5[ (T+w)dt =0 ; |
te (345) x
therefore, if we substitute oW obtained by substitution of (3.)) into :
(3,2), and (3,2) dnto (3.5), we obtain »

X - -~ Vv L
L i\/{(*\ MY, = M 3 )8k, +TIS8E),, tavdt = o, (3.6)

In the shove formula, ZEP?%WEEV i& any wrbitrary viriuel displecenent;

therefore, if & virtual displacement 2 (7 'r%) =¥, consequontly 5(’5‘«7‘{?“‘“"4; BE a,

is teken, we have ZE(‘Y: ¢ for all 4’!{:“ - that is, no distortien is

nroduced relalive to such virtual displacements, Alse, sinee we have

! Mot

e AT JrHITY
e e 8 f i o
L\0 T 2&{,,1‘“/'5 dae )=

J

), AR i = o

IR ’ 2

Fas.val

(S
\=7

.

;
the last term in (2.6) becomes equal to zere O. From the fact that (3.,6) showls

hold for arbitrary t. end V, we get the equation of motion

1

oy

o} M . M
i s (M !
v [

|

— '>/ = O (3.7)

Fach term in the above equation expresses the components of the various auonti=
ities relative to the coordinate system after def'crmation,

AM.so, the virtusl work at each time becomes {inslly !

— — Y i
W37 = 8 s /\4?};>,,H‘/ j (3.8)
V .

|

NETTANIE L ol =y 3b
furthermere, since 8 /V-=5T=0 we get T =TV,

If we designate by ’/J¢ the elastic potential, we gev from (3.8)

/pg¢ :7-//;,'('2}/‘,)” C T/r/va?&;,, ' (3.9)
- 10 =

e TR Y
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Since @  is a function of 5/,,;; , We heve

P b o .
b = 5L Q& (3.10)
A /i/
comparing (3.9) and (3.,10) we get
"'T,f‘ “ J_— /0 l)’\:,.,
LE D, (3.1)
wince ‘/ is an dpverient, we must obtain -’;( « in the form of _Z, = E//f,, ,
oo e gV T e et 5, 0 4
Lo T 7T L &,/V/w‘.; , tE frEs & e Ty Furthernere, fi) also is a

~

function of Fh, 3 the ratio with the density /7 before deformation is

glven tija = ot 5 e g
by ‘ Arl T g, /i Py

i

Consequently, now ilsking » and i a8 conatants (Note: There are no relalions

among the indices N1 AL ¥ ) , and setting

" 2
o = g Q) I] =2p (3.12)

we get

i ,
T =Y I+ 22+ 3L + §1; -(llz;;!ﬁ""%“f.-)
. (3.13)

In finite distortions, when we can disregard Il' Ie, I3 in comparison with

unity 1, we get ,
—_ =] -+ 1L E
/ / ;ﬂ_ Vindio’s )

oT (3.24)

=]l -
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' y\;, i %

which gives us Hooke's law, If we take E a8 Young's modulus and Y a8

Foisson's retio (Note: We can obtain any arbitrary law of elastlelty depending
on how we take §5 and Il’ 12’ 13), we get the following relations among %,/L
and ;fi Vo .
Ev s

. Y o RN 20 1 o= ..,.,,:‘“"
MEZ

Ty ) (1 v)

IV, DEFORMATION OF THIN SHLLS AND THE BOUATIONS €F DYNAMICS

Relew, assume constent thiclmess and consicer very thin shells; cell @
curved surface (shell) whose thickness is divided evenly inte iwo parts a
eentral surface", Use &W,/3;7” as the indlces for the veclor and tensor com=
penents reletive to a central surface; we adopt the convention Unui their vulues
are taken as 1 and 2, Furthermore, before doformation, we assume beforehand

1
]

that “i is so chosen that the surfaces where E = constent ceincide with

the central surfuces, The perpendicular line ifrom a) the positiion of any
particle %Z? before deformstion, in the shell to b) the centrsl surfuce Lelore
deformation is assumed to intersect the perpendiculsar to the central surface
aleo after defomation. We affix the caret symbol " AV to the verions quunte
ities releting to the certrel surfare, and distinguish from the penersl point
quantities ineide the shell, If we designsie by z the distence measured slong

the normal, before deformation, to the centrsl surface, then the distortion

tensor of sny arbitrary point within the shell Lecomes as follow

14 ﬁ;d

— A B ! & ! =
Eap== Eup = Eop = & (Kup +Aup) - ER L, o
CoB=12) )

R / /
Ein= Eu3 = L, —BN3s s

where

RESTRICTED
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/
pxpresses the distortion of the central surface, Also, if we designate by 'fu)\

the components relstive to the coordinate system, alter delormation of the re=
lative displacement vector correspending to a point fixec on the centrel surfece,

we express the relative distortion with respect to the central plene by

i [ i ! / \ PN
¢ = o (W T TR A .
C e 7N Ya o ;j;{' A 7 V) o ) 3

and the quantity releting the change in the curvature of the central plane is

/
& s - fe - N
AT e T 4 ( w2 Lt
G/3 ,j?; ( ?‘a‘r,.z /;’:‘5 Z’./{LH / r/fl(’ aq /“’J .
[

/
Again, decignating by /ﬁt,,./? and /;’,q,- the second {undamentsl quantily of the

centrel surface before and after deformation, respectively, we haves

i /
Furthermore, designsting by 73,  and /7  the radius of curvature helore
j INORY, Newad

and ai‘tar,-raapeetivej deformation relative to the direction determined Ly the

retios of #f " 4F A of the central surfsce, and by H and 'H the average

eurvetires and by K and 'K the totel curvetures, reepcctively, we get the

expregsion , o
() H PN 7t By
T - TR G-l U Al TN A
f b “ L gap N AN (T )
(the usual sumuation relative to &, 2 does not hold).

From the assumpiions regarding the relative distortion 5,;, with respect
to ihe central surface, namely that the shell is very thin enc that even after
deformation the normal to the eentral surface is maintained, ve cun set

’? ":Wf?:g;"g'é and also when disregurding terms in w;‘T of the second degree,
(5 1]

"13'
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/ be 3
we can express W o 88 a ‘nonreletive" function in &~ , relative only te

N iyl
j‘ ,3 ; b o and ¢ E s in the following approximute formi
\[ - " -{-- N\ ,+«- '—Z-B );'i ”
%l‘ — Mi&l(fﬂ s,}/ ~ v)
Y ! e —— ! A= \\ "i‘ ".:;5 14
Vs, = R (f,2- g,2)T %G ]
| v ’
t ——enrd n.C ,...l--"'a e e A )
T, = /T CT: - el # ’L) e 2 .
' 33 .
| S ~, )
Consequently, if we use &,,=C (&% =1,2) ai the boundary condition

z = + h (the thickness of the shell is 2 h) in the sbove formula and both sur-

faces, we get ,

Consequently, we have h h ,
e de= | ¢l de =0,
Ly “B =h
(DJ B = 339—) ‘
18
S z2s. dz =0 [se]
| I
=h
(L.2)
h h ,
- (" gda = [ 2y de
- -
h C“‘)ﬁ = \a9‘>
S 'g,\'a“d%"" o
-k (h3)
- w -
RESTRCTED
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Qd
s gt
£
i»f‘n
=

- | l S,— .""’.'
T (F(kdr=)
Again,setting ( 9E™ ‘,;)‘?r‘« = K («Lhm\
" <A KPP h‘ w3 o3
\ WTafde =277, X ke Tz = ™M™
Al Sin

hn . —
"{i"‘ —»:"".}(H"
\ J 3__\'(‘\(\0 — <) "

R
~
o
7
D
1931
LH
i
T

and multiplying (3.7) by k and zh, we integrate over the shell's thickness

intervalj if we use (L,2) and (Le3), the cquations of motion of the thin shell

becomes 5 =\ -
> A — ":; 7 — . [ _— 0
P e Y 2. pre
J et _— w3 / ‘
.\’ P i }1‘;,,, ‘x o ) 27
/
1 At T
\ M "’ w - (o=

(h-b)
$ince the shell is very thin, we can as usual set p33 = 0, Furthermore, if

we use (L.2), we get

.4 ol By L b= e (3
oA Jhn eV 1 a*? .l Tl .
i == | tv'za <‘§ fj i % S )) (h-g)
where we take . 5
T of . ot I l g™ CJ%,
PR i
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Again, if we set

T =5 Xh £ A%
(5= £ =71,
L, .
N ,,L nox g o B 2)
‘) l\/]'::: f‘:“w (&".:: ‘;2- L ﬂﬂ.h 3"1(\)\ o= (.w'i) l'“')
N o NEES LA R
{ g b e \ L. >\ 3
S =g \_h
we gev . A ; - , )
o SV - T g —\ 3 Vel 3 9
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In (L.6), the term on the right side is a second-degrce tern in the curvature
and is appended for the {irst time. However, this quantity is so small that
one can usually set it together with f-/'e and 7\”‘8 equal to zero in com=
parison with the other quantities. The quantities (L4.6) which muct be teken
anew into special considerstion as factors influeneing finite distoeriion are

/N
the auantities 1/-‘?“ Wy B contsined in qu
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V. ENFRGY OF DEFNFMATION OF THIN SHELLS, AND CONDITIONS GOVERNING STABILITY
Since, in the case where the shell is thin, we can approximately set
pP3 s 0, we can express iq_g in terms of Zi’_ and E;’ 3 furthermore, if we
disregrad élair and %a/"r in equation (L.1), the deformation euergy in the entire
body of the shell, éf = gv’p CM\/, finally becomes as {ollows if we disregard

the variation in density before and after deformation:

A - NE N T - R , A f
&:‘::: /-\S (I‘-1~.1.(1"V/l,,7f‘13~‘r-.u3_("\i"ﬂ(‘"‘ﬂ)f(z)(' -
.f;

[
L | . e (5.1)
== | (F+20)F)dS -Y-F,ZS gir“}j'ﬁ'l(lﬁ-v) M)dS,
=% s
where Eh o 281
PRSPV B TR (av®)
¢ S S = et &
I]'.: E.n( q_z_-gjéf'f ?_,‘
Lo ™ et < ,
K= T ; (o B= 1,20,
T =P P, = det P
‘ g
f‘f'“‘l“« (”‘h""ffr’u
If we designate by Y the work done by extcrnal prcssure p, we have
& [
T e ! .
12 == Fjél\vg d\) (5'3)

[Motes (5.2) was omitted in the original,/
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where a0, = N w3
g2

45 ==V dEE (v B=12)

Consequently, the energy TT of displacement of the entire body ol the thin

shell. can Pe written as Tollows:

(] == C.].‘D—-\.Tf
T - - (5l)

Therefore, the conditions governing the equilibrium of a shell for any
arbitrary & W 18

}"'T == O .
(5.5)

This eauilibrium conditlon depends upon either stable equilibrium or unstable

2 ~
equilibrium and for any ,§‘¢._/A [Bie] it is necessery that S TT>0w &< 0.
The load which causes a change from stable equilibrium to unstable equilibrium,

relative to (5.5) and any é§1u> , 18 sought from the second equation:

(SLTT:::: [

IV. THE BASIC BQUATIONS OF DURCHSChLAG

We have discuse.d the signiflicance of Durchschlag in the Intreduction.
In order io obtain ihe relation between sctual load and bend, one may tuke
(1e6), (he?), and (Lih) as the solution Lformulas after proper adjustments and
solve in accordance with suitable boundary conditions, In the phenomenon of
Durcheehlag, however, the caleulations are simple if carried out as described
below.

Durchsehlag oecurs in either rode or shells which possess small initiel

curvature. For example, in tihe partial sphericsl shell 2) shown in Figure 3,

if we assume no flexural rigidity even position (3) can maintain the state of
-18-

Declassified in Part - Sanitized Copy Approved for Release 2012/03/12 : CIA-RDP82-00039R000100190015-5



Declassified in Part - Sanitized Copy Approved for Release 2012/03/12 : CIA-RDP82-00039R000100190015-5

equilibrium witheut externsl pressure, Furthermore, if we have the situation
(1) and ne initial distortion, then situation (3) too showld have no distortion.
If there is no distortion, then any point P in (1) should correspond to point Q
of (3) on the straight line parallel to the Z=axis, Next, 1f we consider the
flexural rigidity and subject such a position as (1) to an external pressure,

we el a delormation such as ) furthermore, a distortion is probably created
in the center surface, However, 1f the point P is assumed to move to some

such point as 0! in tne atate (L), then we can consider thet, since the shell
Orters greet resistance towsrd tension (elongation), the horizontsl distance

M is very small, Therefore, from calculations in which it is assumed that

all particles on (1) move psrallel to the Z-axis it is easy to arrive at cale

has already carried out computations witl the assum;tion that the horizontal
digtance Q0! equals O, Sinece the initial curvature is small, we can as a

first approximation eonsider the stress of the center surface and diseciion

of distertlon in the direction of the X-axis. Tn such a caso, LI we take E3== o]
a3 the base plane and designute by V/(E2FL> tha distance from the shell's
Iniilal base plane and Eyég} the perpendicular component of the bend, then
the components of the distertion in the horizontul direction relative to

of the eceniral surface's disteriion are:
= L (W T35 gt | (6:1)
6= "’mrﬁ’wﬁ'ﬁ-}-i(N""jﬁ)w Q»\/-;..‘&j)) ﬁ_i‘\/'“’w’ﬁ

(xf=1,2)

=19 =
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WTTED

Tn the above eauatien, W and m are invariant with respect te transformations
of curvilinesr coordinates within the base plane, If we employ the conditlions

w = 0E = 0 on the boundary, equations (5.4) and (5,5) cen be written as below:
. T Y B ~rh e — / — =
§T1 = D)= [P o, 86,04 T 008 gy PO 30 =0

f Consequently we havei

s - , 3’3 | 1t :
.Pm =0, "D&A‘sm =¥ - P r(/v-l-i\LS)m; o . (6.2)
& \ :z“rg'.: 1,2.) '

The corresponding cond tions become, instead of (2.8) and (6,1), 88 follows:

E“’?‘7E‘ -+ E’T u% 4,\-] s = E.F: &Y b CW'T‘.IQ m-r (W éﬂk))@s <Nr:m5):“ﬂ (W'FJL)
- (Wm?-' “pa qui 773)‘(6,3)

T

Next we try to rewrite the above equation for special cases

(1) RECTANGULAF COORDTNATE SYSTEM

- e ®©n Y )
\ o ™ i [ fmm =
(tlaen, Flmy, Fleea); v =" v, TS
T VARS

Distortien components:

{
p AR
N TR ¢ VO L) R P Uy *
( ,L = ;,"'"!":Z 7 'jx/ . N\
1 ¥
A ¥ W %
¢ v W dwNT L 2;_“)
; \.3 "’21’—35{4’?&‘3@ 357 2‘(‘)‘}
i ¢
1 ’ I )N | "*W ,i
: Pog '*Lﬁ-’ _!_’3_;:_> __'(* .)w) (,?__/,+ ":zm' “. |
| LT ‘; " (6.3)

| = 20 =

FRICTEDR

Declassified in Part - Sanitized Copy Approved for Release 2012/03/12 : CIA-RDP82-00039R000100190015-5



Declassified in Part - Sanitized Copy Approved for Release 2012/03/12 : CIA-RDP82-00039R000100190015-5

3 Q
(%Nota: We use the designation &€ ,=§ / and designate the physical comw
wp A gqﬁ

Ponents relative to the basic coordinate system. We conform te this in what

i followa, )
Iquations of eouilibrium (we introduce the stress function F):
B S o OF < )E
) ’ Xy e T g
T N . . ) (6,)4)
PAAW == ity ALY ) iy m) "m) _f_jV e
RNk Ty Q[) 'K X e ( WAL
PRI IR Ny T T )
!
‘ 3
‘ > 3 rka (ouih)
vive e e M s e e,
WUETE BA 3 gy h R, T T
law of elasticity: v 4
© O )7;'-" ‘=
; o LT P — = (Y
€, = =N ==V ‘u> - C Tt Dx"')
i funed U .
L : ‘ 277 LE
[ £ N - e "S-l
; \‘, LL.“_E.-L,{.‘.‘S—'Y e E ( » )'§x>
| 7
! o i e 2 air
= P — - oo (["VV) ' ¥ o v o

(9.5)

In the various equations above, however, the influence of elengation

(tension) of the coordinates in the direction of the base plane is amall and

{ therefore omitted, Furthermere, ss mentioned before, the components of the

|
|
1
;

yOER TR
; i fsfmik
i
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Bl ok
PR S N

various quantities in the direction of the central surface are replaced by

the companents in the direction of the base plane,

In order to take these influences also into consideration, for the components
Q
appearing 1n the varlous equations above, We may use 'P

=Y. ['q a5 the
£ Qﬁ/ (fuﬁ
pioyaical components of f.p;,‘,g for example, and for the Christoffel symbols we
! LY
nay employ IT"V, instead of ["Y R
wg “]

With respect to the latter we may use

90{_ :‘,2 f.z o~ E;'\.a rﬂ“‘-»'wp
rether than (2,5); and in the former we may employ instead of (€.7) the following
, pxpression: r"[s/e.j
J < § ?
Y ,_ Ye 72,;;.: 9&;/@ T 15/3 a3 )
| rﬂf' i ( gfw ) j (afb ;fc« ?5_8

(“1/91'?"')8 - %‘2")'

(2) POLAR crompmnamEs (0= -, EZ= 8, = ou, v, W -w)
Distortion components: . .
. By -
S L (IR L iy
b=l g R Y- 2 G S
. y ) | " oY P TS
o= Eab s = g (5 LG F%)-é%#gﬁﬂ;)
fquations of equilit:rium (we introduceﬂthe stress function F) Y
7%&5'%“;”" r:?-% 3 %z':_g} (Jf:;%i'), i :0_
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Suitable Conditions:
(2 /19l LIuNLE AW . W, 197
A‘\‘"':'%'Z'?FG’&N '"3?9)} <?r’- ?r‘><*‘?r‘ f’-’)’“ F" )r‘ ”Z-ﬁl

—[k?”)é’r('jm%_)} ’J,«v- 7"“ )6’ j

where (6.61)
Law of elasticity: ; o e -
vi g :_ﬂ_(ﬁw,}"f) N _L_{.*..?_f Ler myj“p
g i E‘_ 1 21‘) —— E r [ ™ '-‘."‘Dc’y';’ 5:'1}
, mle - i
) e | VG' 0 ! )i 2”!. _ / ")r- -LJ*,,T"E" ;
\ gz\-;:_:(:"f;-y?“):'g:irz V\F’)"}- ';w,j.ﬂ)_s
iJ | e 1 T (L (6.7
En é“::,:”mz = nj(h.v)'ﬁ'kr’w/ '

Also in the various equations above, we have disregarded the effect of
elongation (tension) of tie central surface. These corrections sll can be

found in a way completely identical to that discussed in (1),

VIII. CONCLUSION

The author, on the basis of the elasticily theory of finite dofermations,
has examined the fundamentals of the theory of shells. If we compare his
resulis with previous theories in the form of a table, we get Table No, 1 below,
Finally he has derived the fundamentals equations relating to Durchsehlagj he
has indicated them in ihe form of definite concrete formulas suitable for sole

utions, He wishes to defer the explanatien of these formulas to another oceasion,

-23-
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Table No. 1
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General theory of

Love's theory of

Karman's theory of

General theory of

infinitesimal dis- shells flat shells finite deformatioms,
placement ¥ 4 and theory of shell\f
S— v
Cospanents of displacement
in the distortion components —>- up to 1st up to 1st up to 2nd up to 2nd
Law of elasticity —> Hooke's law Hooke's law Hooke's law arbiirary

Defoermation of In direction of—>-|
coordinate system|surface/perpendi-

Variation in the metric (effect

of temsion of cemtral surface) -—>-

Variation of the curvatore —>
The 1imits applied —>

Peraliarity of
the load bending

Cases other than
_buckling = >
In the case of
buckling —>

cular to surface-s

- disregarded

linited to infinitesi-
mal deformations

) disregarded

n

up to 1st

bending small in
comrarison with
shell thick

disregarded

uo to 1st
disregarded

up to 1st

bendings several
tines the shell
thicl

linear

buckling load is
determined as the
eigenvalue of the
eguilibrivi egua~

tion. Displacenent

is indeterminate

-2 -

nonlinear

) disregaréed or up

to thne ist
up to ist or 2nd

disregarded or up
to ist
up to ist or 2nd

arbitiaiy

nonlinear

up to buckling locads, Same as Karman's

bend 03 thereafter,
nonlinear

— -
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Finally I should like Lo take this opportunity to extend my deepest thanks
to Professor Watanabe, who kindly geve me guidance while 1 was conducting this
investigation,

(Appended Notes The part after Sectien V was emended after the lecture

maeting in order to make future methods of solution convenient.)
LITERATURE CITED

1) A. E. Be Love. vathematical theory of Masticity. Fourth Editden, P 815

2) Th. von larman and Hsue=-Shen Taien. The Buckling of Spherical Shells by
mxternal Pressure., Journal of the Aeronautical Sciences, Volume 7, Po U3,
1939,

3) The von Kerman, Ge Do Louis and Hsue=Shen Tsien, The Influence of Curya-
ture on the Buckling Characteristics of structures, Journal of the Aero=-
nautical Sciences, Volume 7, Pe 277, 1940,

i)  KAWANO Chupl. 1Theoretical Ixamination of Klastic Instability Fhenomenon
in Shells" /in Japanesg/. Nihon Kokugaku Kaishi /Japanese Aeronautical
Associationts Journal/, Volume B, No. 70, p. 178, Pebruary 15L1.

g) MIZUKI Saburo. "Theoretical Investigations Concerning the Collapse of
Cylindrical Shells by Pressure" lin Japanesg]. Kyushu Teikoku Daigaku
Sotsugyo Rombun [R'yuahu Imperial University Graduate Thes@g . Octover 1542,

6) SARATANL Yoshio, Theoretical Investigation Coneerning the Collapse of
round Conical Shells by Fressure! [in Japanesg/. ibidenm 5.7

7) F. D Murnaghan, Finite Deformation of an flastic Solid., American Journsl
of Mathematies. April 1937, p. 235

.25

RESTRICTED

Declassified i - iti;
ied in Part - Sanitized Copy Approved for Release 2012/03/12 : CIA-RDP82-00039R000100190015-5



Declassified in Part - Sanitized Copy Approved for Release 2012/03/12 : CIA-RDP82-00039R000100190015-5

8) R. Kappus, %ur Flastizitatstheorie endlicher Verschiebungen ZEn the

Flastieity Theory of Finite Diaplacemen§7. Zeitschrift fur Angewandte

Mathematik und Mechanik., Bd, 19, Nr. 5, p. 271, 1939,
9) M. A, Biot, Hlastizitatstheorie Zweiter Ordnungmit Anwendungen [Elaatjcity

theory of Second Order with Applicationg?. Deit. fur Angewandte Math=

ematik und Mechanik, Bd, 20, Nr. 2, p. 89. .
10) A. J. McConnell., Application of the Absolute Differential Caleulus,

1931,

DISCUSSION

Chalirman (Mr IGUCHI Teuneo): Are there any questions or discussions on
the report just heard? Is anyone ...? Since it seems that no one has any
remarks, I should like to express a fow words of thanks io the author,

Mr SUHARA, as he jusi explained, has just started on thu very fundamentals
of the case where the deformations of thin shells are large, and has also
established thie necessary formulas of elasticity., I understand that the
printing of this thesis involved eytremely great difficulties. Of course
the theory of shells ig of importance to shipbuilders, For example, the
present theory of Leams doess not apply well to the thin skin of ship hulls;
it is being temporarily used. Analysis is being carried out in the various
fields of this theory, It is wonderful that work is being done on funda=-
mental researches in this connsetion. We can expect great future develop=-
ments. We are grateful for this tremendously difficult and splendid report.
I am sure all will wish to show their appreciation together by applauding.
(a1l applaud).
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